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Abstract 

 

The purpose of the study was to determine whether individual differences in at-risk 4th graders’ 

language comprehension, nonverbal reasoning, concept formation, working memory, and use of 

decimal labels (i.e., place value, point, incorrect place value, incorrect fraction, or whole 

number) are related to their decimal magnitude understanding. Students (n = 127) completed 6 

cognitive assessments, a decimal labeling assessment, and 3 measures of decimal magnitude 

understanding (i.e., comparing decimals to the fraction 
1

2
 benchmark task, estimating where 

decimals belong on a 0-1 number line, and identifying fraction and decimal equivalencies). Each 

of the domain-general cognitive abilities predicted students’ decimal magnitude understanding. 

Using place value labels was positively correlated with students’ decimal magnitude 

understanding, whereas using whole-number labels was negatively correlated with students’ 

decimal magnitude understanding. Language comprehension, nonverbal reasoning, and concept 

formation were positively correlated with students’ use of place value labels. By contrast, 

language comprehension and nonverbal reasoning were negatively correlated with students’ use 

of whole number labels. Implications for the development of decimal magnitude understanding 

and design of effective instruction for at-risk students are discussed.  

 

Keywords: individual differences; mathematics; rational numbers 
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The Role of Domain-General Cognitive Abilities and Decimal Labels  

in At-Risk Fourth-Grade Students’ Decimal Magnitude Understanding 

Many students struggle when the curriculum shifts from whole numbers to rational 

numbers in the upper elementary grades. The ability to accurately assess magnitude is thought to 

be key for consolidating properties of whole numbers and rational numbers, since magnitude is a 

unifying property of all numbers (Siegler, Thompson, & Schneider, 2011) and rational number 

magnitude knowledge is related to future mathematics achievement (Bailey, Hoard, Nugent, & 

Geary, 2012; Booth & Siegler, 2008; DeWolf, Bassock, & Holyoack, 2015; Fazio, Bailey, 

Thompson, & Siegler, 2014; Rittle-Johnson, Siegler, & Alibali, 2001, 2012; Siegler & Pyke, 

2013). Students at risk for mathematics difficulties demonstrate pervasive and systematic 

misconceptions related to estimating rational number magnitude (e.g., Jordan et al., 2016; 

Malone & Fuchs, 2016), but much of the research has centered on common fractions (i.e., 
𝑎

𝑏
). It 

is unclear whether the development of decimal magnitude understanding among at-risk students, 

the focus of the present study, parallels that of fraction magnitude understanding. Understanding 

individual differences in at-risk students’ development of decimal magnitude understanding 

provides insight into the cognitive abilities required to develop competence with decimals, which 

in turn can guide the design of early screening tools and interventions. 

Most college and career-ready state standards emphasize decimal magnitude 

understanding. By end of fourth grade, students should be able to compare decimal tenths and 

hundredths and reason about their size. However, 67% of fourth-grade students could not 

estimate the location of a decimal on a number line on the National Assessment of Education 

Progress (U.S. Department of Education, 2011). Many students incorrectly apply whole-number 

logic to decimals, e.g., assuming 0.274 is greater than 0.83 because 274 is greater than 83 (Rittle-
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Johnson et al., 2001), and these misconceptions are difficult to correct (Kallai & Tzelgov, 2014; 

Resnick et al., 1989;; Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2004).  

In this paper, a decimal refers to a number written with digits to the right of the decimal 

point (e.g., 0.25). Decimal magnitude understanding refers to the ability to estimate and reason 

about the size of a decimal. For this study, we focused on determining the location of a decimal 

on a number line, rationalizing about the size of a decimal compared to the benchmark fraction 
1

2
, 

and judging the validity of decimal and fraction equivalencies. The purpose of the study was to 

determine whether individual differences in cognitive abilities and use of decimal labels (i.e., 

place value, point, incorrect place value, incorrect fraction, or whole number) are related to at-

risk fourth-graders’ decimal magnitude understanding.  

Potential Cognitive Predictors of Decimal Magnitude Understanding  

We focus on individual differences in language comprehension, nonverbal reasoning, 

concept formation, and working memory, as these four cognitive resources are related to the 

development of fraction understanding (e.g., Hecht & Vagi, 2010; Jordan et al., 2013; Namkung 

& Fuchs, 2015; Seethaler, Fuchs, Star, & Bryant, 2011; Vukovik et al., 2014), and we located no 

prior studies examining cognitive predictors of decimal magnitude understanding. Although 

fractions and decimals have different symbolic notation (e.g., 
1

2
 vs. 0.5) and labeling convention 

(e.g., “one-half” vs. “five-tenths”), they also have similar properties (i.e., both are rational 

numbers that can signify magnitudes less than one) and students tend to struggle with both 

fractions and decimals (e.g., Kallai & Tzelgov, 2009, 2014; Ni & Zhou, 2005).   

In the present study, we operationalized language comprehension as the ability to 

accurately define printed words or use a word to describe a picture. To index nonverbal 

reasoning, we assessed the ability to solve logical puzzles and define relationships between 
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pictures. For concept formation, we focused on the ability to apply a rule to a pattern of objects. 

For working memory, we focused on span tasks assessing the central executive component of 

working memory, or the ability to hold pieces of information in the mind while performing 

cognitive tasks. We focus on span tasks involving both sentences and numbers, as both forms 

have been found to be related to fraction understanding and mathematics achievement in general. 

The cognitive abilities incorporated in the studies described below are consistent with these 

methods for operationalizing these four cognitive processes.    

Seethaler et al. (2011) found that language comprehension, nonverbal reasoning, concept 

formation, and working memory were unique predictors of fraction-calculation skill. Although 

the present study is not about calculations, research suggests that improved magnitude 

understanding improves calculation skill (e.g., Fuchs et al., 2014), as these processes likely 

develop iteratively (Rittle-Johnson & Siegler, 1998; Rittle-Johnson et al., 2001). Namkung and 

Fuchs’s (2015) findings support this. They found that language comprehension, concept 

formation, and nonverbal reasoning play a role in fourth-grade students’ development of accurate 

fraction number line estimation. Similarly, in a two-year longitudinal study, Jordan et al. (2013) 

found that third-grade students’ language comprehension and nonverbal reasoning, (along with 

calculation fluency, reading fluency, and attentive behavior) predicted their development of 

conceptual understanding of fractions in fourth grade, including the ability to estimate fraction 

magnitude on the number line.  

Vukovik et al. (2014) found a somewhat more nuanced set of relations among these 

domain-general abilities and the development of fraction magnitude understanding. First-grade 

students’ language comprehension, nonverbal reasoning, working memory, and attentive 

behavior, were measured along with their whole-number knowledge. In second grade, students’ 
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whole-number knowledge was again indexed; then students’ understanding of fractions was 

examined in fourth grade. Language comprehension, working memory, and attentive behavior 

predicted fraction understanding, including the ability to estimate fractions on the number line. 

Yet, although these domain-general abilities predicted fourth graders’ understanding of fractions, 

these effects were completely mediated by students’ second-grade whole-number skill.  

Although their findings stand in contrast to the earlier studies, language comprehension, 

working memory, and attentive behavior have also been found to predict whole-number 

calculation skill (e.g., Seethaler & Fuchs, 2006; Seethaler et al., 2011). In the Vukovic et al. 

(2014) study, these domain-general abilities did not predict rational number knowledge beyond 

whole-number calculation skill (which is why we control for students’ whole-number knowledge 

in the present study). It stands to reason that these abilities are important for developing 

competence with both whole numbers and rational numbers.   

Despite some inconsistency in findings across these studies, language comprehension, 

nonverbal reasoning, concept formation, and working memory appear related to the development 

of fraction understanding, especially developing number line estimation skill. We therefore 

hypothesized a similar developmental pattern for decimals as fractions. At the same time, 

important distinctions may emerge, considering that decimals and fractions have different 

symbolic notation, which affects labeling conventions. For labeling fractions, the numerator and 

denominator have a special term (e.g., read 
1

2
 as “one-half and 

1

3
 as “one-third”). By contrast, 

labeling decimals reflects place value (e.g., read 0.2 as “2 tenths” and 0.35 as “35-hundredths”). 

Therefore, the bipartite (
𝑎

𝑏
) structure of fractions may impose additional cognitive demands for 

estimating magnitude over what is involved for decimals (e.g., DeWolf, Grounds, Bassok, & 

Holyoak, 2014). Although our study did not compare and contrast fraction and decimal labeling 
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conventions, we did investigate whether decimal labels are related to students’ decimal 

magnitude understanding and cognitive abilities, which indirectly addresses these differences.  

Labeling Decimals  

We identified one study that suggests using decimal place value labels is related to 

increased magnitude understanding. Mazzocco and Delvin (2008) investigated whether low-

achieving, typically-achieving, and learning disabled sixth graders’ decimal magnitude 

understanding and knowledge of decimal place value labels (e.g., reading 0.49 as “forty-nine 

hundredths”) predicted their ability to rank order fractions and decimals at eighth grade. Students 

with mathematics learning disabilities had the most difficulty labeling decimals with place value 

labels, and these difficulties persisted into eighth grade. By contrast, incorrectly labeling 

decimals in sixth grade for low-achieving and typically-achieving students were not predictive of 

students’ ability to name decimals with place value labels in eighth grade. That is, some low-

achieving and typically-achieving students failed the naming test in sixth grade, but passed in 

eighth grade. This is likely because 94% of students who mastered the ranking test in eighth 

grade used some place value labels for decimals in sixth grade. They concluded that the inability 

to correctly name a decimal with place value labels may represent a key deficit in rational 

number understanding among students with mathematics learning disabilities, which suggests 

that decimal labels may play an important role in students’ development of rational number 

understanding. The authors did note, however, that using place value labels in sixth grade did not 

guarantee greater magnitude understanding in eighth grade, as 22% of students who used place 

value labels in sixth grade failed the ranking test in eighth grade.  

There is also some evidence in the fraction literature to suggest a positive relation 

between the quality of fraction labels and developing fraction knowledge. Miura, Okamoto, 
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Vlahovic-Stetic, Kim, and Han (1999) compared U.S., Croatian, and Korean first- and second-

graders’ initial fraction ideas. They hypothesized that Korean students would have the greatest 

foundational knowledge of fractions because the Korean naming system for fractions directly 

supports magnitude understanding. That is, the direct translation of a unit fraction such as 
1

3
 is “of 

three parts, one,” whereas English and Croatian refer to it as “one-third,” which does not produce 

a direct mental image of magnitude. As expected, Korean students had greater foundational 

knowledge of fractions than students in the other two countries. So, explicit vocabulary linked to 

magnitude understanding (as reflected in the Korean language) positively influenced students’ 

initial concepts of fractions.  

Paik and Mix (2003) extended Miura et al. (1999) by examining differential fraction 

competency among Korean and U.S. first- and second-grade students. Paik and Mix found that 

when students were provided fraction labels mimicking Korean usage, U.S. students actually 

outperformed Korean students on measures of fraction competence. Both studies reveal the 

importance of explicitly defining relevant vocabulary when introducing novel concepts, such as 

rational numbers, to students.   

Given the importance of magnitude language for enhancing initial rational number 

understanding, we were interested in assessing whether place value labels activate magnitude 

representations that children can use to guide problem solving. The present study extends prior 

work by identifying a range of decimal labels used by at-risk fourth-grade students (i.e., place 

value, point, incorrect place value, incorrect fraction, or whole number) and investigating the 

potential cognitive correlates of decimal label use. We focused on fourth grade, the first year of 

intensive focus on rational numbers. This study therefore has important theoretical and practical 

implications. If naming decimals with place value labels represents a key deficit among eighth-
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grade students with mathematics learning disabilities, as shown in Mazzocco and Delvin (2008), 

understanding potential cognitive correlates of such deficits can assist in the design of screening 

tools and interventions to enhance outcomes at the upper elementary grades.  

Based on prior research, we hypothesized that naming decimals with place value labels is 

positively correlated with greater accuracy on each of the decimal magnitude tasks. Although 

Mazzocco and Delvin (2008) found that using place value labels did not guarantee greater 

decimal magnitude understanding, Miura et al.’s (1999) study on early fraction knowledge 

development indicated a positive relation between fraction labels and enhanced fraction 

understanding. Therefore, using place value labels may represent an important indicator of 

magnitude understanding. Further, as previously discussed, developing rational number 

understanding requires substantial background knowledge, including relevant vocabulary, using 

deductive and inductive reasoning, and holding information in the memory while solving 

complex problems. For these reasons, we hypothesized that students’ ability to name a decimal 

with place value labels is positively correlated with language comprehension, nonverbal 

reasoning, concept formation, and working memory. This is parallel to our hypothesis about the 

relation between students’ domain-general abilities and their decimal magnitude understanding. 

Note that naming a decimal with place value labels is a possible indicator of magnitude 

understanding, but naming a decimal with place value labels does not guarantee that a student 

has any knowledge about the decimal value (Mazzocco & Delvin, 2008). The remaining labels 

are not indicators of magnitude understanding. We therefore did not expect that students’ use of 

point, incorrect place value, incorrect fraction, or whole number labels is related to magnitude 

understanding or domain-general cognitive abilities. 

Method 
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Participants and Screening 

 Participants were 127 fourth-grade students from the southeastern region of the United 

States. All participants had whole-number mathematics difficulty, defined as scoring below the 

35th percentile on the Wide Range Achievement Test – 4th Edition (WRAT-4; Wilkinson & 

Robertson, 2006) at the beginning of their fourth-grade year, and were therefore at-risk for 

difficulty in learning about decimals. The WRAT-4 includes 40 problems of increasing 

difficulty. Alpha on this sample was .76.  

Qualified students participated in two 45-minute individual testing sessions, which 

included the cognitive batteries. We excluded students who performed below the 9th percentile 

on both subtests of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), 

because this study is not about intellectual disabilities. Some students in our sample were control 

students in a randomized-control trial testing the efficacy of a rational number intervention 

(Fuchs & Malone, 2015). Our sample did not receive intervention. Demographics of the sample 

was as follows: Mage = 9 years, 5 months (August of fourth-grade); 57.6% female; 48.0% African 

American, 22.8% Caucasian, 21.3% Hispanic, and 7.9% other; 92.1% of students received 

subsidized lunch; 17.3% were English-Language Learners; and 15.0% received special education 

services (10.2% for learning disabilities).  

Cognitive Predictors   

We assessed students’ language comprehension with WASI-Vocabulary (Wechsler, 

1999). Students identify pictures and define words (42 items). The picture items score “1” 

(correct) or “0” (incorrect). The words score “0”, “1”, or “2”, depending on the sophistication of 

the answer. Testing discontinues after five consecutive scores of 0. Reliability is .88.    
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 We assessed students’ nonverbal reasoning with WASI-Matrix Reasoning (Wechsler, 

1999), which requires students to complete a pattern on each page by selecting one of the five 

choices on the bottom of the page. Each puzzle is increasingly difficult. Testing discontinues 

after four consecutive scores of 0 or four scores of 0 out of five items. Reliability is .93.  

We assessed students’ concept formation using the subtest from Woodcock Johnson-III 

(Woodcock, McGrew, & Mather, 2007). Students see a series of pictures (40 items across six 

spans), and determine a categorization rule for why the pictures are in a box. Each span includes 

practice to cue the types of rules and patterns for a span. Each span has a threshold for moving 

on and a ceiling to discontinue testing. Reliability is .76.  

 We assessed students’ central executive working memory using two subtests from the 

Working Memory Test Battery for Children (WMTB-C; Pickering & Gathercole, 2001): 

Listening Recall (sentences) and Counting Recall (numbers). For Listening Recall, the tester 

reads a sentence. The student states whether the sentence is true or false, and then recalls the last 

word of the sentence. There are six spans with six trials per span. With each span, the number of 

sentences the student must remember and recall increases by one. The tester discontinues testing 

after three incorrect answers within a span. Reliability is .82-.91.  

 For Counting Recall, students count dots on different pages, and must recall the number 

of dots in the order they were presented. There are six spans with six trials per span. With each 

span, the number of pages the student must count and recall increases by one. The tester 

discontinues testing after three incorrect answers within a span. Reliability is .82-.91.  

Decimal Outcome Measures 

For Compare to 
1

2
 (Malone, Loehr, & Fuchs, 2015), students were presented with a 0-1 

number line on an 8.5”x11” piece of cardstock with 
1

2
 marked as a fraction (not as the decimal 
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0.5), to decrease the probability of using whole number rules to assess magnitude. Students 

labeled 10 decimals (0.6, 0.20, 0.03, 0.09, 0.682, 0.25, 0.5, 0.49, 0.12, and 0.70) and then 

determined whether the decimal was less than, greater than, or equal to 
1

2
  (read as “one half”). 

They did not place the decimals on the number line. Each item received a label code and an 

accuracy score. Alpha was 0.76. See Table 1 for definitions and examples of the five labels 

identified.  

With Decimal Number Line (Hamlett, Kelley, Malone, & Fuchs, 2014, adapted from 

Siegler et al., 2011) students placed 14 decimals (0.6, 0.95, 0.7, 0.58, 0.9, 0.38, 0.69, 0.4, 0.82, 

0.5, 0.75, 0.47, 0.8, 0.3) on a computer number line with endpoints 0 and 1 (no tick marks). The 

score for each item is the absolute difference between the student’s estimate and where the 

decimal actually goes, divided by the scale of the number line endpoints (i.e., 1). Scores are 

averaged to yield average absolute error. Since lower scores indicate stronger performance, we 

multiplied scores by -1 for data analyses so that a positive score indicates stronger estimation 

ability. Test-retest reliability on a similar fraction assessment was .85.  

The Decimal Equivalency task (Malone et al., 2015) requires students to judge the 

accuracy of 10 equivalency sentences (i.e., a=b). Three items included only decimals 

(0.9=0.90; 0.20=0.201; 0.1=0.01), six items included one decimal and one fraction 

(
6

10
=0.60; 0.4=

4

100
; 

8

10
=.08; 0.30=

30

100
;  

50

100
=0.05; 0.2=

20

100
), and one item included a decimal and 

whole number (0.7=7). Instructions included a true statement and a false statement with whole 

numbers: The tester says “3+4=7 makes sense, so you would say ‘true’.” Then the tester says, 

“3+4=12 does not make sense, so you would say ‘false’.” Then, the tester shows the student the 

10 flashcards, one-by-one, and the student says “true” or “false” for each item. Alpha on this 

sample was 0.71. 
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Procedure 

 Trained research assistants (graduate students pursuing a master’s degree in the school of 

education) administered all tests. In the fall of fourth grade, students were individually tested on 

the cognitive assessments in two 45-min sessions. In the spring of fourth grade (after rational 

number instruction occurred in the classroom), students were individually tested on all decimal 

outcome measures din one 60-min session. We listened to 99% of individual testing sessions. 

Accuracy of administration and scoring was 96.43%.  

Data Analysis  

Before conducting regression analyses, we tested all assumptions of linear regression. We 

then ran a regression model for each of the three decimal magnitude outcomes using WASI 

Vocabulary, WASI Matrix Reasoning, Concept Formation, Counting Recall, and Listening 

Recall raw scores as the predictor variables and controlling for students’ incoming calculation 

ability (i.e., WRAT-4). We calculated correlations between each of the decimal magnitude tasks, 

students’ use of decimal labels, and cognitive abilities.  

Results 

Cognitive Predictors of Students’ Decimal Magnitude Understanding 

See Table 2 for means and standard deviations of all variables, along with correlations 

between decimal magnitude measures and cognitive predictors. See Table 3 for a summary of the 

regression results for all three decimal magnitude outcomes. For Compare to 
1

2
, students’ 

incoming calculation ability, language comprehension, nonverbal reasoning, concept formation, 

and working memory together accounted for 13.2% of the variance, F(6, 120)=3.03, p=.009. 

WASI Vocabulary and Counting Recall predicted students’ ability to accurately compare a 
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decimal to one-half. Matrix Reasoning, Concept Formation, and Counting Recall failed to 

predict students’ ability to compare a decimal to one-half, controlling for the other variables.  

 For Decimal Number Line, students’ incoming calculation ability, language 

comprehension, nonverbal reasoning, concept formation, and working memory together 

accounted for 12.9% of the variance, F(6, 120)=2.97, p=.01. WRAT-4 and Counting Recall 

predicted students’ decimal number line estimation ability. WASI Vocabulary, Matrix 

Reasoning, Concept Formation, and Listening Recall failed to predict students’ accuracy on the 

number line, controlling for the other variables.  

 For Decimal Equivalency, students’ incoming calculation ability, language 

comprehension, nonverbal reasoning, concept formation, and working memory together 

accounted for 16.3% of the variance, F(6, 120)=3.89, p=.001. WRAT-4 and Concept Formation 

predicted students’ accuracy in assessing whether magnitude statements were true or false. 

WASI Vocabulary, WASI Matrix Reasoning, Counting Recall, and Listening Recall failed to 

predict students’ accuracy in assessing whether decimal equivalency statements were true or 

false, controlling for the other variables.  

Decimal Labels  

See Table 4 for frequency of label use across trials and students. See Table 5 for 

correlations among students’ magnitude understanding, cognitive abilities, and use of decimal 

labels. 

Discussion 

We investigated whether individual differences in language comprehension, nonverbal 

reasoning, concept formation, working memory, and use of decimal labels was related to at-risk 
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fourth-graders’ decimal magnitude understanding. The following includes a discussion of our 

findings, followed by recommendations for designing decimal instruction.  

Cognitive Predictors of Students’ Decimal Magnitude Understanding 

Developing decimal magnitude knowledge does not exactly parallel that of fractions 

(DeWolf et al., 2014), given that nonverbal reasoning did not predict any of the outcomes. It may 

be that the bipartite structure of fractions (i.e., [
𝑎

𝑏
]) increases the reasoning demands required to 

accurately assess magnitude. Or, in the case of decimals, the other three cognitive predictors (i.e., 

language comprehension, concept formation, and working memory) may be more salient 

predictors than our nonverbal reasoning measure. Each of the three decimal tasks tapped 

students’ decimal magnitude knowledge, but results indicate each require a slightly different set 

of skills.  

To successfully complete the Compare to 
1

2
 task, students must understand what 

1

2
 

represents (i.e., written as a fraction versus a decimal). They must understand what the numerator 

and the denominator mean (thus involving language comprehension) and how they work together 

before determining how 
1

2
 relates to decimal magnitude. While holding this information in their 

mind (i.e., working memory), they must see that 
1

2
 can be converted to decimal format before 

determining whether the decimal is less than, greater than, or equal to 
1

2
. Note that the fraction 

1

2
 

does not match decimal language nor does it allow students to use whole number knowledge to 

compare magnitudes (e.g., 0.6 is greater than 0.5 because the whole number 6 is greater than 5). 

The Decimal Number Line was a more explicit estimation task than the Compare to 
1

2
 task, yet 

required similar skills.  
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Only numerical working memory (i.e., Counting Recall), a more domain-specific 

working memory task (Raghubar, Barnes, & Hecht, 2010), predicted accuracy on both number 

line tasks. Because both working memory with sentences (i.e., Listening Recall) and numbers 

have been found to be related to fraction understanding (e.g., Seethaler et al., 2011; Vukovick et 

al., 2014), including moderating the effects of fraction intervention on number line estimation 

(e.g., Fuchs et al., 2014), we included both tasks in our theory-driven model. This could signify a 

difference between learning fractions and learning decimals. That is, assessing fraction 

magnitude may tax working memory more than assessing decimal magnitude.    

Unlike the number line tasks, only concept formation predicted accuracy on the Decimal 

Equivalency task. To score well on the concept formation assessment, students must generalize a 

common rule that applies to a set of objects (e.g., a series of different colored squares and 

circles). The equivalency statements in this task included a mix of fractions, decimals, and whole 

numbers, and students therefore had to assess the commonality between the two numbers before 

judging whether the equivalency statement was true. This task also relies on other cognitive 

resources, but switching back and forth between different number representations may have 

overshadowed the need for them. The ability to assess commonalities between numbers (i.e., 

concept formation) appears to be most important in assessing these difficult equivalency 

statements.  

Decimal Labels  

As expected, language comprehension, nonverbal reasoning, concept formation, and 

working memory were positively correlated with students’ use of place value labels. This makes 

sense, since labeling the decimal 0.12 as “twelve hundredths”, for example, requires all the of 

these cognitive resources. The student must name the numeral and recognize and select relevant 
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place value positions (i.e., language comprehension), process this information (i.e., reasoning 

abilities), and hold this information in the mind (i.e., working memory) to construct an accurate 

label. Students must also attend to relevant and irrelevant information (i.e., concept formation), 

for example, how to attend to trailing and leading zeros.  

In terms of magnitude understanding, using place value labels did not guarantee greater 

magnitude understanding, as revealed by the nonsignificant correlation between place value 

labels and accuracy on the Compare to 
1

2
 task. This is consistent with Mazzocco and Delvin’s 

(2008) findings. It could be that benchmarking to 
1

2
 (rather than 0.5) served as a distractor, and 

students did not rely on their place value knowledge on this task. Students likely needed to 

convert 
1

2
 to a decimal before assessing magnitude. Understanding place value may assist 

students in assessing decimal magnitude, especially on items with a fraction and a decimal like 

6/10=0.6 on the Decimal Equivalency task, likely because these equivalency statements primed 

students to use their place value knowledge. To assess this, we examined correlations between 

students’ composite place value score and accuracy on the six true/false items with a fraction and 

a decimal (i.e., 6/10=0.6, 8/10=0.08, 0.4=4/100, 0.30=30/100, 50/100=0.05, and 0.20=20/100). 

Place value label use was indeed positively correlated with accuracy on these items (r=.43, 

p<.001). Note that each of these items had fractions presented in base-10 format (which was not 

the case on the Compare to 
1

2
 task).  

Unlike place value, point labels were not correlated with students’ decimal magnitude 

understanding and negatively correlated with concept formation. That is, the lower students’ 

score on concept formation, the more likely they were to use point labels. This parallels our 

finding that concept formation was a significant predictor of the Decimal Equivalency task. It 

appears that concept formation may play a significant role in supporting students’ place value 
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understanding, given that students’ use of place value labels were positively correlated with 

accuracy on the six decimal equivalency items that included both a fraction and a decimal. 

Naming decimals with point labels does not imply fundamental misunderstanding of decimals; 

rather, it reflects the common, informal language that many adults use. However, point labels do 

not reflect sophisticated understanding of magnitude language (like place value). That is, naming 

the decimal 0.12 as “point 1…2” does not invoke an image of magnitude. This is not to say that 

using point labels reflects unsophisticated mental representations of decimal magnitude. Rather, 

point labels do not reflect sophisticated understanding. Our findings parallel those of Miura, et 

al. (1999) and Paik & Mix (2003) that using labels for fractions that reflect magnitude 

understanding (like those used in the East Asian languages) enhance students’ understanding of 

fractions. Thus, teaching decimal place value labels may be one way to support decimal 

magnitude understanding.  

Interestingly, using incorrect place value labels was positively correlated with language 

comprehension and accuracy on the Compare to 
1

2
 task. This result is difficult to interpret, 

because there is no advantage to incorrectly labeling a decimal and assessing whether it is less 

than, greater than, or equal to one-half.  Students with greater magnitude understanding may be 

more likely to attempt to use a place value label (even if it is incorrect). (However, the 

correlation between students’ use of place value labels and accuracy on this task was not 

significant). Attempting to label a decimal with place value language may represent a transitional 

phase in their learning. So, students with greater language comprehension may have been more 

likely to attempt to use place value labels, even if they were inaccurate.  

Using whole number labels demonstrates pervasive misunderstanding of decimals, which 

helps to explain why using whole number labels was associated with lower accuracy on the 
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Decimal Number Line and Decimal Equivalency. To glean a better understanding of students’ 

whole-number misconceptions, we assessed how children generally think about decimal 

magnitude comparison problems using two versions of a “hidden decimal task” (Resnick et al., 

1989). (Note that this was for descriptive purposes only; it was not the focus of the study.) One 

item asked students to identify whether 0.X or 0.XXXX was greater (Xs represent numbers 

covered by pieces of paper), or if it was impossible to know. Only 14% of children answered 

correctly. Instead, 86% of children identified 0.XXXX as the greater decimal, which is consistent 

with whole number logic. The second item provided the value of the tenths place (0.8 or 0.2XX) 

to reveal how competing strategies (length of digits versus comparing tenths) influence 

responses. The decimal with more digits is the smaller decimal. Increased accuracy (45% of 

children answered correctly) on this item is difficult to interpret, since students can successfully 

use whole number logic to compare the numbers in the tenths place without having any 

understanding of what the decimals represent (Loehr & Rittle-Johnson, 2015).  

These whole number misconceptions appear to be related to deficits in cognitive abilities. 

This unexpected finding suggests that whole number bias may be pervasive among students with 

weaker cognitive abilities and that these students have deep misconceptions of decimals. 

Students with deficits in these areas may be more likely to rely on less sophisticated strategies 

(e.g., relying on whole number logic) to approach problems with which they are unfamiliar (e.g., 

assessing decimal magnitude).  

Instruction Designed to Compensate for Incoming Cognitive Strengths and Weaknesses 

Based on our results, and in conjunction with findings from previous research, we offer 

three recommendations for designing instruction to anticipate and avoid misconceptions among 

at-risk fourth grade students by designing instruction that compensates for incoming cognitive 
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deficits to improve students’ decimal magnitude understanding. First, we recommend using 

magnitude language to define decimals (i.e., always using place value labels) to reduce potential 

misconceptions that decimals have the same properties as whole numbers (Cramer, Monson, 

Wyberg, Leavitt, & Whitney, 2009; Fyfe, McNeil, & Rittle-Johnson, 2015; Gelman & Markman, 

1986; Graham, Kilbreath, & Welder, 2004; Loehr & Rittle-Johnson, in press; Waxman & 

Gelman, 1986). Second, we suggest providing students with strategies for explicitly comparing 

and contrasting decimals, whole numbers, and fractions, with the goal of improving students’ 

ability to reason about the size of numbers and fluidly transitioning from one rational number 

notation to another. This includes the inclusion of correct and incorrect examples to minimize 

potential whole number misconceptions (Durkin & Rittle-Johnson, 2012). Finally, instruction 

should be designed to incorporate extensive supports, scaffolds, and explicit strategies to 

minimize the amount of information students have to hold in memory to successfully assess 

decimal magnitude (Fuchs et al, 2014). However, more work is needed to assess the tenability of 

these recommendations as there is very little research on improving at-risk students’ decimal 

magnitude understanding.  
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Table 1  

 

Decimal Label Definitions 

 
Label Definition Example (0.25) 

Place Value Correct use of place value labels “twenty five hundredths” 

Point  Correct use of informal label  “point twenty five” or “point 2…5” 

Incorrect Place Value Incorrect use of place value labels “twenty five tenths” 

Incorrect Fraction Incorrect misapplication of fraction terms for decimals “two fifths” 

Whole Number Incorrect use of whole number labels for decimals “twenty five” or “two…five” 

Other  Incorrect answers that could not be classified  “twenty five hundred”, “two hundred twenty five”, or other 

Note: Of these five labels, we consider place value labels the most sophisticated, as they are the only labeling convention that reflect magnitude 

language. The other four labels do not reflect decimal magnitude language (note that point labels are correct, whereas the remaining three labeling 

conventions are incorrect). If the student’s response did not fit into any of these categories, the code other was used. Note that naming the 

benchmark fraction (i.e., “one-half) did not clue students to how to name a decimal. Therefore, the frequency of decimal labels students can be 

considered a proxy of their knowledge of decimal labels. 
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Table 2 

Means, Standard Deviations, and Correlations for Decimal Magnitude Tasks and Cognitive Predictors 

 

Measures 
Standard 

Scores 

 
Raw Scores 

  
       

 M (SD)  M (SD)  1 2 3 4 5 6 7 8 

Math Achievement               

 1. WRAT-4    24.39 (2.13)          

Magnitude Understanding               

2. Compare to ½    4.61 (1.70)  .11        

3. Number Line    0.31 (0.09)  .22* .25**       

4. Decimal Equivalency    6.00 (1.83)  .27** .23** .20*      

Cognitive Predictors               

5. WASI Vocabulary 47.08 (9.64)  31.81 (6.89)  .17 .18* .18* .21*     

6. WASI Matrix Reasoning 45.78 (9.00)  16.57 (5.47)  .07 .12 .12 .19* .11    

7. Concept Formation 84.13 (14.03)  13.83 (7.36)  .13 .11 .10 .31*** .49*** .26**   

8. Listening Recall 87.73 (19.48)  9.57 (4.04)  .16 .00 .00 .15 .51*** .12 .42***  

9. Counting Recall 77.62 (15.44)  16.71 (4.43)  .16 .23** .23** .13 .39*** .09 .35*** .39*** 

Note: ***p < .001, **p < .01, *p < .05.  
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Table 3 

 

Summary of Regression Results 

 
Outcome Predictors B SE t p 

Compare to ½ (intercept) 4.610 0.144 31.95 < .001 

 WRAT-4 0.045 0.070 0.64    .497 

 WASI Vocabulary   0.062 0.027 2.32    .009 

 WASI Matrix Reasoning 0.036 0.027 1.34 .183 

 Concept Formation 0.007 0.024 0.27 .787 

 Listening Recall –0.078 0.045 –1.73 .087 

 Counting Recall  0.078 0.037 2.09    .038 

      

Number Line (intercept) 0.309 0.008 39.28 < .001 
 WRAT-4 0.008 0.001 2.10 .038 

 WASI Vocabulary   0.002 0.001 1.64 .103 

 WASI Matrix Reasoning 0.002 0.001 1.08 .284 

 Concept Formation –0.000 0.001 –0.21 .838 

 Listening Recall –0.005 0.002 –1.94 .054 

 Counting Recall  0.005 0.002 2.29 .024 

      

Decimal Equivalency (intercept) 6.000 0.153 39.32 < .001 

 WRAT-4 0.200 0.074 2.67 .009 

 WASI Vocabulary   0.014 0.028 0.51 .608 

 WASI Matrix Reasoning 0.037 0.029 1.27 .206 

 Concept Formation 0.059 0.026 2.32 .022 

 Listening Recall –0.011 0.048 –0.24 .809 

 Counting Recall  –0.003 0.039 –0.07 .945 

Note: Bold indicates significant predictor.
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Table 4 

 

Frequency of Decimal Label Use 

 
Label % Used Across Trialsc % Used ≥ 1d M (SD) if Used ≥ 1e 

Place Valuea  39.3% 58.3% 6.74 (2.47) 

Pointa 13.5% 20.5% 6.42 (3.68) 

Incorrect Place Valueb  14.1% 49.6% 7.38 (3.65) 

Incorrect Fractionb 2.8% 10.2% 2.69 (2.59) 

Whole Numberb  24.4% 33.1% 7.38 (3.65) 

Otherb 6.3% 28.3% 2.22 (2.46) 

Note: aPlace value and point labels are correct labels. bIncorrect place value, incorrect fraction, whole 

number label, and other labels are incorrect labels.  cTo compute the percent used across trials, we 

counted the frequency with which students used a specific label across trials and then divided it by the 

total number of trials, multiplied by 100. For example, there were 1,270 trials (127 children each 

answered 10 items). The place value label was used on 499 out of 1,270 trials (i.e., 39.3%). d To calculate 

percent used at least one (i.e., % Used ≥ 1), we calculated the proportion of students who used each error 

code at least once across the 10 trials. To compute this, we summed the number of students who used 

each label at least once and divided it by the total number of students, multiplied by 100. For example, 74 

students used the place value code at least once across the 10 trials (59.3%). eWe calculated the mean and 

standard deviation of label use among the proportion of students who used the label at least once (M (SD) 

if Used ≥ 1; see column d for the percentage of students who used the label at least once). For example, 

among the 58.3% of students who used a place value label at least once, they used a place value label an 

average of 6.74 times across the test.  
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Table 5 

 

Correlations between Students’ Magnitude Understanding, Cognitive Abilities, and Use of 

Decimal Labels 

 

Measures  Decimal Labels 

  Place  

Valuea Pointa 

Incorrect  

Place Valueb 

Whole  

Numberb 

Magnitude Understanding      

Compare to ½  .13 –.05   .18* –.14 

Number Line  .32** –.08   .14 –.32** 

Decimal Equivalency  .45** –.16   .05 –.34** 

Cognitive Predictors      

WASI Vocabulary  .27**   .02   .23** –.36*** 

WASI Matrix Reasoning  .24** –.07 –.08 –.08 

Concept Formation  .37*** –.19*   .11 –.18* 

Listening Recall  .20* –.02   .10 –.17 

Counting Recall  .18* –.06   .05 –.13 

Note: ***p < .001, **p < .01, *p < .05. We do not report correlations for incorrect fraction or other labels, 

because frequencies were below 10%. aPlace value and point labels are correct labels. bIncorrect place 

value and whole number labels are incorrect labels.  

 

 

 


	Amelia S. Malone, Abbey M. Loehr, and Lynn S. Fuchs
	Vanderbilt University
	Method
	Participants and Screening
	Cognitive Predictors
	Decimal Outcome Measures
	Procedure
	Data Analysis
	Before conducting regression analyses, we tested all assumptions of linear regression. We then ran a regression model for each of the three decimal magnitude outcomes using WASI Vocabulary, WASI Matrix Reasoning, Concept Formation, Counting Recall, an...
	Results
	Cognitive Predictors of Students’ Decimal Magnitude Understanding
	Decimal Labels
	See Table 4 for frequency of label use across trials and students. See Table 5 for correlations among students’ magnitude understanding, cognitive abilities, and use of decimal labels.
	Discussion
	We investigated whether individual differences in language comprehension, nonverbal reasoning, concept formation, working memory, and use of decimal labels was related to at-risk fourth-graders’ decimal magnitude understanding. The following includes ...
	Cognitive Predictors of Students’ Decimal Magnitude Understanding
	Developing decimal magnitude knowledge does not exactly parallel that of fractions (DeWolf et al., 2014), given that nonverbal reasoning did not predict any of the outcomes. It may be that the bipartite structure of fractions (i.e., ,,𝑎-𝑏..) increas...
	Instruction Designed to Compensate for Incoming Cognitive Strengths and Weaknesses
	Summary of Regression Results
	Note: ***p < .001, **p < .01, *p < .05. We do not report correlations for incorrect fraction or other labels, because frequencies were below 10%. aPlace value and point labels are correct labels. bIncorrect place value and whole number labels are inco...

